GTX1650显卡安装 tensorflow gpu版本并训练 yolov3 模型

本机显卡为 GTX1650,查询版本后依次安装Cuda-10.1 + CuDNN-7.6 + Tensorflow-gpu-2.1.0

- Cuda 安装

前往 CUDA Toolkit - Free Tools and Training | NVIDIA Developer 下载对应版本,后根据 https://blog.csdn.net/s\_hikki/article/details/106107778 所示步骤安装

添加以下环境变量

```shell

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1

CUDA_LIB_PATH = %CUDA_PATH%\lib\x64

CUDA_BIN_PATH = %CUDA_PATH%\bin

CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64

CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

```

系统变量path中添加:

```shell

%CUDA_LIB_PATH%

%CUDA_BIN_PATH%

%CUDA_SDK_LIB_PATH%

%CUDA_SDK_BIN_PATH%

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1\common\lib\x64

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1\bin\win64

```

- CuDNN 安装

由于本机使用 conda 的虚拟环境,所以我们直接使用以下命令安装

```shell

conda install cudnn=7.6

```

- Tensorflow-gpu 安装

使用以下命令安装

```shell

pip install tensorflow-gpu==2.1.0

```

- 参考博客:

https://blog.csdn.net/s\_hikki/article/details/106107778

https://blog.csdn.net/m0\_49090516/article/details/113576003

接下来我们运行 jupyter notebook,训练yolo v3模型,可以看到,我们运行速度明显提升,运行结果如下