本机显卡为 GTX1650,查询版本后依次安装Cuda-10.1 + CuDNN-7.6 + Tensorflow-gpu-2.1.0
- Cuda 安装
前往 CUDA Toolkit - Free Tools and Training | NVIDIA Developer 下载对应版本,后根据 https://blog.csdn.net/s\_hikki/article/details/106107778 所示步骤安装
添加以下环境变量
```shell
CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64
CUDA_BIN_PATH = %CUDA_PATH%\bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64
```
系统变量path中添加:
```shell
%CUDA_LIB_PATH%
%CUDA_BIN_PATH%
%CUDA_SDK_LIB_PATH%
%CUDA_SDK_BIN_PATH%
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1\common\lib\x64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1\bin\win64
```
- CuDNN 安装
由于本机使用 conda 的虚拟环境,所以我们直接使用以下命令安装
```shell
conda install cudnn=7.6
```
- Tensorflow-gpu 安装
使用以下命令安装
```shell
pip install tensorflow-gpu==2.1.0
```
- 参考博客:
https://blog.csdn.net/s\_hikki/article/details/106107778
https://blog.csdn.net/m0\_49090516/article/details/113576003
接下来我们运行 jupyter notebook,训练yolo v3模型,可以看到,我们运行速度明显提升,运行结果如下