(非官方)RDK新一代模型转换可视化工具 V2.0 更新介绍!

作者:SkyXZ

CSDN:SkyXZ~-CSDN博客-
博客园:SkyXZ - 博客园

封面图


:sparkles: V2.0 版本更新亮点

新版的可视化工具他来了!这代版本解决了上代版本的许多 BUG,同时也新增了一些功能,例如:

:white_check_mark: 页面保持功能

  • 现在在切换页面时,系统会自动记录当前日志及后台进程状态;
  • 切换回来后自动恢复,无需重复启动流程。

示例演示:-

页面保持1-
页面保持2


:white_check_mark: 模型中间产物在线推理支持!

  • 支持在开发机上直接加载 quantion.onnx 文件进行推理,无需部署开发板即可验证量化精度变化!

示例展示:-

在线推理


:white_check_mark: 支持常见分类模型训练与导出

  • 现已支持 ResNet 等主流分类网络;
  • 导出时支持选择多种图像尺寸配置。

示例展示:-

分类模型训练


:white_check_mark: UI 界面全面优化

  • 修复了部分组件显示错乱问题;
  • 重新调整了交互逻辑与按钮样式。

示例展示:-

UI优化


? 版本特性总览(V2.0)

  • :white_check_mark: 支持常见分类模型的量化转换;
  • :white_check_mark: 支持模型导出后在 PC 上进行精度测试;
  • :white_check_mark: 页面状态保持、操作更流畅;
  • :white_check_mark: 优化部分 UI & 修复若干 BUG;
  • :white_check_mark: 新增导出模型时尺寸选择;

? 项目地址 & 下载方式


? 工具功能展示

功能模块

示例图

工具总览

indexindex

模型训练

train

模型导出

exportexport

模型量化检查

quarquar

模型转换

convenconven

反量化节点摘除

deletedelete

输入输出可视化

detectiondetection


:heart: 最后

这款工具是我基于吴诺老师的 X3 工具链设计灵感开发的 X5 可视化量化工具,旨在让刚接触 RDK 开发板的同学能够一站式完成模型训练、转换、部署!

如有任何使用建议欢迎留言或提 issue,项目仍在持续更新中,未来还将加入 开发板管理功能

(qaq:JS真的太难了……)

3 个赞

7c7533e4f2ae40f362748fc95d531ed3 /app/data/images/val/captured_image_10.jpg
2025-07-11 12:50:43,142 e[92mINFOe[0m log will be stored in /app/models/model_test/YOLO/hb_mapper_makertbin.log
2025-07-11 12:50:43,142 e[92mINFOe[0m Start hb_mapper…
2025-07-11 12:50:43,142 e[92mINFOe[0m hbdk version 3.49.15
2025-07-11 12:50:43,142 e[92mINFOe[0m horizon_nn version 1.1.0
2025-07-11 12:50:43,142 e[92mINFOe[0m hb_mapper version 1.24.3
2025-07-11 12:50:43,142 e[92mINFOe[0m Start Model Convert…
2025-07-11 12:50:43,145 e[92mINFOe[0m Using onnx model file: /app/logs/checker_output/.hb_check/quantized_model.onnx
2025-07-11 12:50:43,159 e[92mINFOe[0m Model has 1 inputs according to model file
2025-07-11 12:50:43,159 e[92mINFOe[0m Model name not given in yaml_file, using model name from model file: [‘images’]
2025-07-11 12:50:43,159 e[92mINFOe[0m Model input shape not given in yaml_file, using shape from model file: [[1, 3, 640, 640]]
2025-07-11 12:50:43,159 e[92mINFOe[0m nv12 input type rt received.
2025-07-11 12:50:43,160 e[93mWARNINGe[0m The calibration dir name suffix is not the same as the value float32 of the parameter cal_data_type, the parameter setting will prevail
2025-07-11 12:50:43,160 e[92mINFOe[0m custom_op does not exist, skipped
2025-07-11 12:50:43,160 e[93mWARNINGe[0m Input node images’s input_source not set, it will be set to pyramid by default
2025-07-11 12:50:43,160 e[93mWARNINGe[0m User input ‘preprocess_on’ will be deprecated. If you want to simplify the calibration process, please use ‘skip’ in ‘calibration_type’
2025-07-11 12:50:43,163 e[92mINFOe[0m *******************************************
2025-07-11 12:50:43,163 e[92mINFOe[0m First calibration picture name: captured_image_10.jpg
2025-07-11 12:50:43,163 e[92mINFOe[0m First calibration picture md5:
2025-07-11 12:50:43,183 e[92mINFOe[0m *******************************************
2025-07-11 12:50:46,845 e[92mINFOe[0m Start to Horizon NN Model Convert.
2025-07-11 12:50:46,859 e[92mINFOe[0m Loading horizon_nn debug methods:set()
2025-07-11 12:50:46,859 e[92mINFOe[0m The weight calibration parameters:
calibration_type: load
The activation calibration parameters:
calibration_type: load
The modelwise search parameters:
similarity: 0.995
metric: cosine-similarity
2025-07-11 12:50:46,859 e[92mINFOe[0m input images is from pyramid. Its layout is set to NHWC
2025-07-11 12:50:46,859 e[92mINFOe[0m The specified model compilation architecture: bernoulli2.
2025-07-11 12:50:46,859 e[92mINFOe[0m The specified model compilation optimization parameters: .
2025-07-11 12:50:46,859 e[92mINFOe[0m Start to prepare the onnx model.
2025-07-11 12:50:46,886 e[92mINFOe[0m Input ONNX Model Information:
ONNX IR version: 6
Opset version: [‘ai.onnx v11’, ‘horizon v1’]
Producer: horizon_nn v1.1.0
Domain: None
Version: None
Graph input:
images: shape=[1, 3, 640, 640], dtype=FLOAT32
Graph output:
small: shape=[1, 80, 80, 24], dtype=FLOAT32
medium: shape=[1, 40, 40, 24], dtype=FLOAT32
big: shape=[1, 20, 20, 24], dtype=FLOAT32
2025-07-11 12:50:47,155 e[92mINFOe[0m End to prepare the onnx model.
2025-07-11 12:50:47,181 e[92mINFOe[0m Saving model to: converted_model_original_float_model.onnx.
2025-07-11 12:50:47,182 e[92mINFOe[0m Start to optimize the onnx model.模型转化出现这种报错是什么问题?


在运行pip3 install -r requirements_docker.txt时报错

你好,我使用您的工具链做反量化节点删除时,我摘除过重新摘除不显示我摘除过后的(正确),我去检测这个摘除过的模型时,还是显示那几个我摘除过的节点。

这个貌似是一个很久前的BUG,你应该先显示了一次节点图,然后做的摘除,之后如果你再用查看节点图的工具就会发现图是没变化的。可以用顶上的下载功能下载到本地,解压缩之后就有摘除前和摘除后的图了