背景
- 目前工具链的客户可能存在模型是fp16训练的(即模型中所有的数据都是fp16的),目前地平线工具链中的PTQ暂时不支持fp16模型(后期可能会新增支持fp16数据流,但是短期内没有相应开发规划)。
- 地平线工具链中的PTQ支持fp32数据流的模型,且fp32可以存下fp16数据
基于以上情况,如果客户遇到模型是fp16训练的,我们当前可以使用以下脚本将fp16模型转为fp32模型,然后再来进行PTQ,即可顺利完成PTQ的流程。
代码
1. 安装依赖
pip install -r requirements.txt
2. 运行fp16转fp32的代码
python3 convert.py fp16_model.onnx ./converted_fp32_model.onnx
3. requirements.txt代码如下
colorlog==4.7.2
onnx==1.8.1
numpy==1.18.5
typer==0.3.2
4. convert.py代码如下
import onnx
from onnx import helper as h
from onnx import checker as ch
from onnx import TensorProto, GraphProto
from onnx import numpy_helper as nph
import numpy as np
from collections import OrderedDict
from logger import log
import typer
def make_param_dictionary(initializer):
params = OrderedDict()
for data in initializer:
params[data.name] = data
return params
def convert_params_to_fp32(params_dict):
converted_params = []
for param in params_dict:
data = params_dict[param]
if data.data_type == TensorProto.FLOAT16:
data_cvt = nph.to_array(data).astype(np.float32)
data = nph.from_array(data_cvt, data.name)
converted_params += [data]
return converted_params
def convert_constant_nodes_to_fp32(nodes):
"""
convert_constant_nodes_to_fp32 Convert Constant nodes to FLOAT32. If a constant node has data type FLOAT16, a new version of the
node is created with FLOAT32 data type and stored.
Args:
nodes (list): list of nodes
Returns:
list: list of new nodes all with FLOAT32 constants.
"""
new_nodes = []
for node in nodes:
if (
node.op_type == "Constant"
and node.attribute[0].t.data_type == TensorProto.FLOAT16
):
data = nph.to_array(node.attribute[0].t).astype(np.float32)
new_t = nph.from_array(data)
new_node = h.make_node(
"Constant",
inputs=[],
outputs=node.output,
name=node.name,
value=new_t,
)
new_nodes += [new_node]
else:
new_nodes += [node]
return new_nodes
def convert_model_to_fp32(model_path: str, out_path: str):
"""
convert_model_to_fp32 Converts ONNX model with FLOAT16 params to FLOAT32 params.\n
Args:\n
model_path (str): path to original ONNX model.\n
out_path (str): path to save converted model.
"""
log.info("ONNX FLOAT16 --> FLOAT32 Converter")
log.info(f"Loading Model: {model_path}")
# * load model.
model = onnx.load_model(model_path)
ch.check_model(model)
# * get model opset version.
opset_version = model.opset_import[0].version
graph = model.graph
# * convert all FLOAT16 input/output to FLOAT32.
for input in model.graph.input:
input.type.tensor_type.elem_type = 1
for output in model.graph.output:
output.type.tensor_type.elem_type = 1
# * The initializer holds all non-constant weights.
init = graph.initializer
# * collect model params in a dictionary.
params_dict = make_param_dictionary(init)
log.info("Converting FLOAT16 model params to FLOAT32...")
# * convert all FLOAT16 aprams to FLOAT32.
converted_params = convert_params_to_fp32(params_dict)
log.info("Converting constant FLOAT16 nodes to FLOAT32...")
new_nodes = convert_constant_nodes_to_fp32(graph.node)
graph_name = f"{graph.name}-fp32"
log.info("Creating new graph...")
# * create a new graph with converted params and new nodes.
graph_fp32 = h.make_graph(
new_nodes,
graph_name,
graph.input,
graph.output,
initializer=converted_params,
)
log.info("Creating new float32 model...")
model_fp32 = h.make_model(graph_fp32, producer_name="onnx-typecast")
model_fp32.opset_import[0].version = opset_version
ch.check_model(model_fp32)
log.info(f"Saving converted model as: {out_path}")
onnx.save_model(model_fp32, out_path)
log.info(f"Done Done London. ?")
return
if __name__ == "__main__":
typer.run(convert_model_to_fp32)
示例
以下给了一个图示,如果您顺利运行上述脚本,模型中所有的都会变成fp32数据流-